Weak–Strong Uniqueness of Dissipative Measure-Valued Solutions for Polyconvex Elastodynamics
نویسندگان
چکیده
منابع مشابه
Weak-strong Uniqueness for Measure-valued Solutions
We prove the weak-strong uniqueness for measure-valued solutions of the incompressible Euler equations. These were introduced by R.DiPerna and A.Majda in their landmark paper [10], where in particular global existence to any L initial data was proven. Whether measure-valued solutions agree with classical solutions if the latter exist has apparently remained open. We also show that DiPerna’s mea...
متن کاملConvergence of variational approximation schemes for elastodynamics with polyconvex energy
We consider a variational scheme developed by S. Demoulini, D. M. A. Stuart and A. E. Tzavaras [Arch. Rat. Mech. Anal. 157 (2001)] that approximates the equations of three dimensional elastodynamics with polyconvex stored energy. We establish the convergence of the time-continuous interpolates constructed in the scheme to a solution of polyconvex elastodynamics before shock formation. The proof...
متن کاملA Relaxation Theory with Polyconvex Entropy Function Converging to Elastodynamics
The equations of polyconvex elastodynamics can be embedded to an augmented symmetric hyperbolic system. This property provides a stability framework between solutions of the viscosity approximation of polyconvex elastodynamics and smooth solutions of polyconvex elastodynamics. We devise here a model of stress relaxation motivated by the format of the enlargement process which formally approxima...
متن کاملA Stress Relaxation Model with Polyconvex Entropy Function Approximating Elastodynamics
The equations of polyconvex elastodynamics can be embedded to an augmented symmetric hyperbolic system. This property provides a stability framework between solutions of the viscosity approximation of polyconvex elastodynamics and smooth solutions of polyconvex elastodynamics. We devise here a model of stress relaxation motivated by the format of the enlargement process which formally approxima...
متن کاملAxisymmetric Euler-α Equations without Swirl: Existence, Uniqueness, and Radon Measure Valued Solutions
The global existence of weak solutions for the three-dimensional axisymmetric Euler-α (also known as Lagrangian-averaged Euler-α) equations, without swirl, is established, whenever the initial unfiltered velocity v0 satisfies ∇×v0 r is a finite Randon measure with compact support. Furthermore, the global existence and uniqueness, is also established in this case provided ∇×v0 r ∈ L c (R) with p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archive for Rational Mechanics and Analysis
سال: 2012
ISSN: 0003-9527,1432-0673
DOI: 10.1007/s00205-012-0523-6